Insecticide application effect on ground dwelling arthropods in edamame crops

Main Article Content

Rosma Hasibuan
Olivia Cindowarni
Muhammad Kamal
Purnomo
Agus Karyanto

Abstract

Ground-dwelling arthropods play many important roles in agroecosystems. This experiment was conducted to assess the effects of botanical and synthetic insecticides on soil arthropods in edamame crops. The study included six treatments: soursop leaf extract at concentrations of 1% and 2%, diflubenzuron at concentrations of 0.05% and 0.1%, a common synthetic insecticide (chlorantraniliprole 0.15%), and a control (untreated plants), each with three replications. Pitfall traps were used to sample soil arthropods. A total of 2222 soil arthropods were collected, consisting of 1443 (64.94%) predatory arthropods and 778 (35.06%) detritivorous arthropods. The dominant orders of predators and detritivores were Araneae (61.5%) and Coleoptera (40.2%), respectively. The highest numbers of predatory and detritivorous arthropods were found on edamame plants sprayed with soursop extract, while the lowest numbers were recorded on plants treated with the common synthetic insecticide chlorantraniliprole. These results indicate that chlorantraniliprole negatively impacts the presence of ground-dwelling arthropods in edamame agroecosystems. In contrast, the application of the botanical insecticide (soursop leaf extract) and the synthetic insect growth regulator (diflubenzuron) did not reduce the abundance or diversity of ground-dwelling arthropods in edamame fields.

Article Details

How to Cite
(1)
Hasibuan, R. . .; Cindowarni, O. .; Kamal, M.; Purnomo, P.; Karyanto, A. Insecticide Application Effect on Ground Dwelling Arthropods in Edamame Crops. J Trop Plant Pests Dis 2025, 25, 262-274.


Section
Articles

References

Adams PR III, Orr DB, Arellano C, & Cardoza YJ. 2017. Soil and foliar arthropod abundance and diversity in five cropping systems in the coastal plains of North Carolina. Environ. Entomol. 46(4): 771–783. https://doi.org/10.1093/ee/nvx081

Anggraini E, Anisa WN, Herlinda S, Irsan C, Suparman, Suwandi, Harun MA, & Gunawan B. 2021. Phytophagous insects and predatory arthropods in soybean and zinnia. Biodiversitas. 22(3): 1405–1414. https://doi.org/10.13057/biodiv/d220343

Alves DS, Machado ART, Campos VAC, Oliveira DF, & Carvalho JA. 2016. Selection of Annonaceae species for the control of Spodoptera frugiperda (Lepidoptera: Noctuidae) and metabolic profiling of Duguetia lanceolata using nuclear magnetic resonance spectroscopy. J. Econ. Entomol. 109(2): 649–659. https://doi.org/10.1093/jee/tov396

Ponsankar A, Vasantha-Srinivasan P, Senthil-Nathan S, Thanigaivel A, Edwin ES, Selin-Rani S, Kalaivani K, Hunter WB, Alessandro RT, Abdel-Megeed A, Paik CH, Duraipandiyan V, & Al-Dhabi NA. 2016. Target and non-target toxicity of botanical insecticide derived from Couroupita guianensis L. flower against generalist herbivore, Spodoptera litura Fab. and an earthworm, Eisenia foetida Savigny. Ecotoxicol. Environ. Saf. 133: 260–270. https://doi.org/10.1016/j.ecoenv.2016.06.043

Bernard K, Groden E, & Drummond FA. 2020. Evaluation of four plant extract repellents for management of the European red ant Myrmica rubra (Hymenoptera: Formicidae). J. Econ. Entomol. 113(4): 1609–1617. https://doi.org/10.1093/jee/toaa091

Biondi A, Desneux N, Siscaro G, & Zappalà L. 2012. Using organic-certified rather than synthetic pesticides may not be safer for biological control agents: Selectivity and side effects of 14 pesticides on the predator Orius laevigatus. Chemosphere. 87(7): 803–812. https://doi.org/10.1016/j.chemosphere.2011.12.082

Biranvand A, Nedv?d O, Tomaszewska W, Al Ansi AN, Fekrat L, Haghghadam ZM, Khormizi MZ, Noorinahad S, ?enal D, Shakarami J, & Haelewaters D. 2019. The genus Harmonia (Coleoptera, Coccinellidae) in the Middle East region. Acta Entomol Mus Natl Pragae. 59(1): 163–170. https://doi.org/10.2478/aemnp-2019-0014

Bitzer RJ, Rice ME, Pilcher CD, Pilcher CL, & Lam WF. 2005. Biodiversity and community structure of epedaphic and euedaphic springtails (Collembola) in transgenic rootworm Bt corn. Environ. Entomol. 34(5): 1346–1376. https://doi.org/10.1093/ee/34.5.1346

Chandran M, Yuvaraj D, Premkumar CS, Saravananan A, Logeshwaran S, Shabeer A, & Romauld S. 2018. Role of carpenter ants, Camponotus sp. as bioindicators for heavymetals and in modifying soil chemistry (Chennai, Tamil Nadu, India). J. Entomol. Res. 42(4): 537–540. https://doi.org/10.5958/0974-4576.2018.00090.7

Dong D, Fu X, Yuan F, Chen P, Zhu S, Li B, Yang Q, Yu X, & Zhu D. 2014. Genetic diversity and population structure of vegetable soybean (Glycine max (L.) Merr.) in China as revealed by SSR markers. Genet. Resour. Crop Evol. 61: 173–183. https://doi.org/10.1007/s10722-013-0024-y

Dunbar MW, Gassmann AJ, & O’Neal ME. 2016. Impacts of rotation schemes on ground-dwelling beneficial arthropods. Environ. Entomol. 45(5): 1154–1160. https://doi.org/10.1093/ee/nvw104

Edde PA. 2021. Field Crop Arthropod Pests of Economic Importance. Academic Press, Elsevier Inc. Cambridge. https://doi.org/10.1016/C2018-0-04342-X

Elie F, Vincenot L, Berthe T, Quibel E, Zeller B, Saint-André L, Normand M, Chauvat M, & Aubert M. 2018. Soil fauna as bioindicators of organic matter export in temperate forests. For. Ecol. Manag. 429: 549–557. https://doi.org/10.1016/j.foreco.2018.07.053

Emilie D, Mallent M, Menut C, Chandre F, & Martin T. 2015. Behavioral response of Bemisia tabaci (Hemiptera: Aleyrodidae) to 20 plant extracts. J. Econ. Entomol. 108(4): 1890–1901. https://doi.org/10.1093/jee/tov118

Frewin AJ, Schaafsma AW, & Hallett RH. 2014. Susceptibility of Aphelinus certus (Hymenoptera: Aphelinidae) to neonicotinoid seed treatments used for soybean pest management. J. Econ. Entomol. 107(4): 1450–1457. https://doi.org/10.1603/EC13523

Geiger F, Bengtsson J, Berendse F, Weisser WW, Emmerson M, Morales MB, Ceryngier P, Liira J, Tchharntke T, Winqvist C, Eggers S, Bommarco R, Pärt T, Bretagnolle V, Plantegenest M, Clement LW, Dennis C, Palmer C, Oñate JJ, Guerrero I, Hawro V, Aavik T, Thies C, Flohre A, Hänke S, Fischer C, Goedhart PW, & Inchausti P. 2010. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl Ecol. 11(2): 97–105. https://doi.org/10.1016/j.baae.2009.12.001

Greene AD, Reay-Jones FPF, Kirk KR, Peoples BK, & Greene JK. 2021. Spatial associations of key lepidopteran pests with defoliation, NDVI, and plant height in soybean. Environ. Entomol. 50(6): 1378–1392. https://doi.org/10.1093/ee/nvab098

Hanif KI, Herlinda S, Irsan C, Pujiastuti Y, Prabawati G, Hasbi, & Karenina T. 2020. The impact of bioinsecticide overdoses of Beauveria bassiana on species diversity and abundance of not targeted arthropods in South Sumatra (Indonesia) freshwater swamp paddy. Biodiversitas. 21(5): 2124–2136. https://doi.org/10.13057/biodiv/d210541

He F, Sun S, Sun X, Ji S, Li X, Zhang J, & Jiang X. 2018. Effects of insect growth-regulator insecticides on the immature stages of Harmonia axyridis (Coleoptera: Coccinellidae). Ecotoxicol. Environ Saf. 164: 665–674. https://doi.org/10.1016/j.ecoenv.2018.08.076

Hikal WM, Baeshen RS, & Said-Al Ahl HAH. 2017. Botanical insecticide as simple extractives for pest control. Cogent Biol. 3(1): 1404274. https://doi.org/10.1080/23312025.2017.1404274

Ibrahim AA, Shairra SA, & El-mahdi IFS. 2012. Studies on the occurrence of true spiders as natural enemies in many Egyptian fields. J. Basic Appl. Zool. 65(1): 1–3. https://doi.org/10.1016/j.jobaz.2011.10.001

Joseph SV. 2017. Effects of insect growth regulators on Bagrada hilaris (Hemiptera: Pentatomidae). J. Econ. Entomol. 110(6): 2471–2477. https://doi.org/10.1093/jee/tox264

Karenina T, Herlinda S, Irsan C, & Pujiastuti Y. 2019. Abundance and species diversity of predatory arthropods inhabiting rice of refuge habitats and synthetic insecticide application in freshwater swamps in South Sumatra, Indonesia. Biodiversitas. 20(8): 2375–2387. https://doi.org/10.13057/biodiv/d200836

Jaya K, Ratnawati, Sjam S, Rosmana A, Tresnaputra US, & Sudewi S. 2022. Abundance of arthropod in the various intensity of pesticides applied on shallots crop Local Palu. J. Trop. Plant Pests Dis. 22(1): 33–40. https://doi.org/10.23960/jhptt.12233-40

Lafooraki EY, Hajizadeh J, Shayanmehr M, & Hosseini R. 2020. Isotomidae (Collembola) from northern Iran with description of a new species of Isotomodes Linnaniemi. J. Asia-Pac. Biodivers. 13(4): 545–553. https://doi.org/10.1016/j.japb.2020.08.012

Lau KW, Chen CD, Lee HL, Low VL, & Sofian-Azirun M. 2018. Bioefficacy of insect growth regulators against Aedes albopictus (Diptera: Culicidea) from Sarawak, Malaysia: a statewide survey. J. Econ. Entomol. 111(3): 1388–1394. https://doi.org/10.1093/jee/toy071

Lord N, Kuhar T, Rideout S, Sutton K, Alford A, Li X, Wu X, Reiter M, Doughty H, & Zhang B. 2021. Combining agronomic and pest studies to identify vegetable soybean genotypes suitable for commercial edamame production in the Mid-Atlantic U.S. Agric Sci. 12(7): 738–754. https://doi.org/10.4236/as.2021.127048

Lovabyta NS, Jayus J, & Nugraha AS. 2020. Bioconversion of isoflavones glycoside to aglycone during edamame (Glycine max) soygurt production using Streptococcus thermophillus FNCC40, Lactobacillus delbrueckii FNCC41, and L. plantarum FNCC26. Biodiversitas. 21(4): 1358–1364. https://doi.org/10.13057/biodiv/d210412

Louzada J & Nichols L. 2012. Detritivorous insects. In: Panizzi AR & Parra JRP (Eds.). Insect Bioecology and Nutrition for Integrated Pest Management. 20 pages. CRC Press, Boca Raton, Florida. https://doi.org/10.1201/b11713-20

Machado EP, Garlet CG, Weschenfelder MAG, Führ FM, Godoy DN, Pretto VE, Contini RE, Franco CR, Omoto C, & Bernardi O. 2022. Interspecific variation in susceptibility to insecticides by lepidopteran pests of soybean, cotton, and maize crops from Brazil. J. Econ. Entomol. 115(1): 305–312. https://doi.org/10.1093/jee/toab265

Djanta MKA, Agoyi EE, Agbahoungba S, Quenum FJB, Chadare FJ, Assogbadjo AE, Agbangla C, & Sinsin B. 2020. Vegetable soybean, edamame: Research, production, utilization and analysis of its adoption in Sub-Saharan Africa. J. Hortic. For. 12(1): 1–12. https://doi.org/10.5897/jhf2019.0604

Magurran AE. 2004. Measuring Biological Diversity. Blackwell Publishing Company. Oxford.

Marcombe S, Chonephetsarath S, Thammavong P, & Brey PT. 2018. Alternative insecticides for larval control of the dengue vector Aedes aegypti in Lao PDR: Insecticide resistance and semi-field trial study. Parasit. vectors. 11: 616. https://doi.org/10.1186/s13071-018-3187-8

Mattson WJ. 2012. The Role of Arthropods in Forest Ecosystems. Springer-Verlag. Nederland.

Moghadamtousi SZ, Fadaeinasab M, Nikzad S, Mohan G, Ali HM, & Kadir HA. 2015. Annona muricata (Annonaceae): A review of its traditional uses, isolated acetogenins and biological activities. Int. J. Mol. Sci. 16(7): 15625–15658. https://doi.org/10.3390/ijms160715625

Moseley D, da Silva MP, Mozzoni L, Orazaly M, Florez-Palacios L, Acuña A, Wu C, & Chen P. 2020. Effect of planting date and cultivar maturity in edamame quality and harvest window. Front. Plant Sci. 11: 585856. https://doi.org/10.3389/fpls.2020.585856

Oxbrough A & Ziesche T. 2013. Spiders in forest ecosystems. In: Kraus D & Krumm F (Eds.). Integrative Approaches as an Opportunity for the Conservation of Forest Biodiversity. (In Focus: Managing Forest in Europe). pp. 186–193. European Forest Institute, Sarjanr, Finland.

Radermacher N, Hartke TR, Villareal S, & Scheu S. 2020. Spiders in rice-paddy ecosystems shift from aquatic to terrestrial prey and use carbon pools of different origin. Oecologia. 192: 801–812. https://doi.org/10.1007/s00442-020-04601-3

Raje KR, Hughes GP, Gondhalekar AD, Ginzel MD, & Scharf ME. 2015. Toxicity of turmeric extracts to the termite Reticulitermes flavipes (Blattodea: Rhinotermitidae). J. Econ. Entomol. 108(4): 1479–1485. https://doi.org/10.1093/jee/tov109

Redlich S, Martin EA, & Steffan-Dewente I. 2018. Landscape-level crop diversity benefits biological pest control. J. Appl. Ecol. 55(5): 2419–2428. https://doi.org/10.1111/1365-2664.13126

Riggi LGA & Bommarco R. 2019. Subsidy type and quality determine direction and strength of trophic cascades in arthropod food webs in agroecosystems. J. Appl. Ecol. 56(8): 1982–1991. https://doi.org/10.1111/1365-2664.13444

Sánchez-Bayo F. 2012. Insecticides mode of action in relation to their toxicity to non-target organisms. J. Environ. Anal. Toxicol. S4: 002. https://doi.org/10.4172/2161-0525.S4-002

Smith JL, Baute TS, & Schaafsma AW. 2020. Quantifying early-season pest injury and yield protection of insecticide seed treatments in corn and soybean production in Ontario, Canada. J. Econ. Entomol. 113(5): 2197–2212. https://doi.org/10.1093/jee/toaa132

Tembo Y, Mkindi AG, Mkenda PA, Mpumi N, Mwanauta R, Stevenson PC, Ndakidemi PA, & Belmain SR. 2018. Pesticidal plant extracts improve yield and reduce insect pests on legume crops without harming beneficial arthropods. Front Plant Sci. 9: 1425. https://doi.org/10.3389/fpls.2018.01425

Thrash BC, Catchot AL Jr, Gore J, Cook D, Musser FR, Irby T, & Krutz J. 2021. Effects of soybean plant population on yield loss from defoliation. J. Econ. Entomol. 114(2): 702–709. https://doi.org/10.1093/jee/toaa279

Wagner PM, Abagandura GO, Mamo M, Weissling T, Wingeyer A, & Bradshaw JD. 2021. Abundance and diversity of dung beetles (Coleoptera: Scarabaeoidea) as affected by grazing management in the Nebraska sandhills ecosystem. Environ. Entomol. 50(1): 222–231. https://doi.org/10.1093/ee/nvaa130

Widhiono I, Darsono, & Fasihah N. 2017. Endemics species of dung beetles (Coleoptera: Scarabaeidae) on the southern slope of Mount Slamet, Central Java, Indonesia. Biodiversitas. 18(1): 283–287. https://doi.org/10.13057/biodiv/d180137

Williams II MM. 2015. Phenomorphological characterization of vegetable soybean germplasm lines for commercial production. Crop Sci. 55(3): 1274–1279. https://doi.org/10.2135/cropsci2014.10.0690

Xu Y, Cartier A, Kibet D, Jordan K, Hakala I, Davis S. Sismour E, Kering M, & Rutto L. 2016. Physical and nutritional properties of edamame seeds as influenced by stage of development. J. Food Meas. Charact. 10: 193–200. https:doi.org/10.1007/s11694-015-9293-9

Zaller JG & Brühl CA. 2019. Editorial: Non-target effects of pesticides on organisms inhabiting agroecosystems. Front. Environ. Sci. 7: 75. https://doi.org/10.3389/fenvs.2019.00075